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Dirac ± Hestenes Lagrangian
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We formulate the variational principle of the Dirac equation within the
noncommutative even space-time subalgebra, the Clifford R -algebra Cl 11,3. A
fundamental ingredient in our multivectoria l algebraic formulation is a D -complex
geometry, D [ span D {1, g 21}, g 21 P Cl 11,3. We derive the Lagrangian for the
Dirac±Hestenes equation and show that it must be mapped on D ^ ^, where ^
denotes an R -algebra of functions.

1. INTRODUCTION

This introduction contains a brief summary of the translation between

the Dirac [1, 2] and Dirac±Hestenes [3] equations. Throughout the paper we

use the following notation: R is the real field; C is the complex field C [
span R {1, i}, i P C , i2 5 2 1; D is the field D [ span R {1, g 21}, g 21 P
Cl 11,3, g 3

21 5 2 1; ^ is an R -algebra of functions from R 4 to R ; and ^ [ ^ R ,

x m P ^, - m P der^, - m x n 5 d m
n P ^ ( m , n 5 0, 1, 2, 3).

Let g m n 5 diag ( 1 , 2 , 2 , 2 ) be the Minkowski metric, ( v ( C ^
Cl1,3) be the one-sided ideal, ( ’ C 4, and C D P ( ^ ^,
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C D [ 1
a1 1 ib1

a2 1 ib2

a3 1 ib3

a4 1 ib4 2 [ 1
c D,1

c D,2

c D,3

c D,4 2 , (1)

am , bm P ^, c D,m P C ^ ^, m 5 1, 2, 3, 4

Let g m P End(() ’ Mat4( C ) be 4 3 4 complex matrices which satisfy the
Dirac algebra:

g m g n 1 g n g m 5 2g m n 14 P Mat4( C ), m , n 5 0, 1, 2, 3

If m P R + is the mass of the particle, then the Dirac equation for a free

particle C D reads

i g m - m C D 5 m C D P ( ^ ^ (2)

For the Dirac matrices a possible choice useful for the discussion presented

in Section 2 is

g m [ { g 0, g k}, k 5 1, 2, 3

g 0 [ 1
1 0 0 0

0 1 0 0

0 0 2 1 0

0 0 0 2 1 2 , g 1 [ 1
0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0 2
g 2 [ 1

0 0 0 2 1

0 0 1 0

0 2 1 0 0

1 0 0 0 2 , g 3 [ 1
0 0 2 i 0

0 0 0 i

2 i 0 0 0

0 i 0 0 2 (3)

A renewed interest exists in the formulation of the Dirac theory in terms

of the Clifford algebra [4±9]. An interesting result is the possibility to write

the Dirac equation in the even space-time subalgebra, Cl 11,3. This result is
achieved by working only with the general properties of the Clifford R -

algebra, in particular the concept of an even subalgebra [10].

An alternative possibility in rewriting the Dirac equation in Cl 11,3 is

represented by the direct translation of the elements which characterize the

standard ª complexº formulation. In the present section, we summarize this

translation and introduce the notion of D -complex geometry [11±14].
Consider a subalgebra isomorphic to the complex field C ,

Cl 11,3 . D [ span R {1, g 21} ’ C 5 span R {1, i}, g 21 % i



The Dirac± Hestenes Lagrangian 2351

By D -complex geometry we mean an R -linear mapping

x : Cl 11,3 ^ ^ ® D ^ ^, D , Cl 11,3

x P linR (Cl 11,3 ^ ^, D ^ ^), C P Cl 11,3 ^ ^, (4)

x ( C ) [ ( C )^ 2 g 21 ( g 21 C )^

where the subscript ^ denotes the mapping on R ^ ^ ’ ^ of the quantity

within the brackets.
The Dirac spinor fields are elements of the C -space C 4 ^ ^, thus are

characterized by eight real functions of four real variables (e.g., ref. 15)

dim R ( 5 dim R Cl 11,3 5 8

A possible basis of the Clifford R -algebra Cl 11,3 is

1,

g 01, g 02, g 03,

g 21, g 31, g 23,

g 5 [ g 0123 P Cl 11,3

An arbitrary element in Cl 11,3 ^ ^ can be written as

a 0 1 g 01 a 1 1 g 02 a 2 1 g 03 a 3 1 g 21 a 4 1 g 31 a 5 1 g 23 a 6
(5)

1 g 5 a 7, a m P ^, m 5 0, . . . , 7

The Hestenes spinor, solution of the Dirac±Hestenes equation,

c H,m 5 am 1 g 21bm P D ^ ^, m 5 1, 2, 3, 4

C H [ c H,1 1 g 31 c H,2 1 g 5( c H,3 1 g 31 c H,4) P Cl 11,3 ^ ^ (6)

will represent the counterpart in the even space-time subalgebra of the com-
plex Dirac spinor C D. The isomorphism

r : ( ^ ^ ® Cl 11,3 ^ ^ (7)

requires the identification

r P lin R (( ^ ^, Cl 11,3 ^ ^), i P (, g 21 P Cl 11,3, r (i) 5 g 21

Let b be the main antiautomorphism of the Clifford C -algebra C ^
Cl1,3; then there exists a Hermitian sesquilinar form [16] in the space of the

Dirac spinors
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h: (+ ^ ( ® C , h P (* ^ ((+)*, h((+ ^ () [ ( b ()( P C

(8)

There exists a basis in ( such that

F ²
Dh C D [ ( w *D,1, w *D,2, w *D,3, w *D,4) 1

1 0 0 0

0 1 0 0

0 0 2 1 0

0 0 0 2 1 2 1
c D,1

c D,2

c D,3

c D,4 2
[ w *D,1 c D,1 1 w *D,2 c D,2 2 w *D,3 c D,3 2 w *D,4 c D,4 (9)

w D,m, c D,m P C ^ ^, m 5 1, 2, 3, 4

We recall that g m P End(() ’ Mat4( C ),

g m : ( ® (, g m P ( ^ (*

Under change of basis

g m ® 6 g m 6 2 1, h ® 6 ² h6*

Therefore, h and g m are different tensors and the identification h 5 g 0 is

not correct.
To translate the Hermitian product (8), (9) into the Cl 11,3 formalism, we

need to single out the conjugation which characterizes the standard Hermitian

conjugate and impose an appropriate geometry. In order to translate F ²
D into

Cl 11,3 ^ ^, we must determine the possible automorphisms ( a ) and antiauto-

morphisms ( b ) of Cl 11,3:

a P aut(Cl 11,3 ^ ^), b P antiaut(Cl 11,3 ^ ^)

a ( C H F H) 5 a ( C H) a ( F H), b ( C H F H) 5 b ( F H) b ( C H)

We find the following:

a , grade involution:

g 0i ® 2 g 0i, g ij ® 1 g ij, g 5 ® 2 g 5

a ( F H) [ F ÃH 5 w H,1 1 g 31 w H,2 2 g 5( w H,3 1 g 31 w H,4)

b , reversion:

g 0i ® 1 g 0i, g ij ® 2 g ij, g 5 ® 2 g 5

b ( F H) [ F Ä H 5 w *H,1 2 w *H,2 g 31 2 g 5( w *H,3 2 w *H,4 g 31)
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a + b , Clifford conjugation:

g 0i ® 2 g 0i, g ij ® 2 g ij, g 5 ® 1 g 5

a + b ( F H) [ F Å H 5 w *H,1 2 w *H,2 g 31 1 g 5( w *H,3 2 w *H,4 g 31)

i, j 5 1, 2, 3, i Þ j, w H,m P D ^ ^, m 5 1, 2, 3, 4

The Hermitian sesquilinear form F ²
Dh C D P C ^ ^ can be translated by

using the reversion and grade involution and adopting a D -complex map-
ping (4),

C ^ ^ { F ²
Dh C D % x ( F Ä H C ÃH) [ [ F Ä H C ÃH]^ 2 g 21 [ g 21 F Ä H C ÃH]^ P D ^ ^

(10)

The D -complex geometry, mapping on D ^ ^, is also justified by the

following argument: We can define an anti-self-adjoint operator
-

- with all

the properties of a translation operator, but, by imposing noncomplex geome-
tries, there is no corresponding self-adjoint operator with all the properties

expected for a momentum operator [17]. The identification of i with the

bivector g 21 gives us two possibilities for defining the momentum operator,

respectively left and right action of the bivector g 21,

r (i C D) 5 g 21 C H or r (i C D) 5 C H g 21, [ g 21, C H] Þ 0

and thus we can define the following momentum operators:

2 g 21

-
- C H or 2

-
- C H g 21

By introducing the concept of left/right operators

2l,r P End (Cl 11,3 ^ ^), 2 l C H [ 2 C H,

2rC H [ C H2, C H P Cl 11,3 ^ ^

necessary within noncommutative algebraic structures where we must distin-

guish between the left and right multiplication, we can express the momentum

operator in Cl 11,3 ^ ^ as

2 g l
21

-
- [ 2 g l

21 ^
-

- or 2 g r
21

-
- [ 2 g r

21 ^
-

-

In translating the Dirac equation, the first choice ( g 21-left action) must
be rejected because such an operator, due to the term

g l
01 - x1 1 g l

02 - x2 1 g l
03 - x3 P End (Cl 11,3 ^ ^)

does not commute with the Dirac±Hestenes Hamiltonian *H.

In the second case ( g 21-right action), the operator g r
21

-
- is real on the

left, and thus commutes with *H,
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[ g r
21

-
- , *H] C H [

-
- (*H C H) g 21 2 *H

-
- C H g 31 5 0

It remains to prove the hermiticity of the momentum operator, 2 g r
21

-
- . To

do this we need to define an appropriate mapping for scalar products. If
probability amplitudes are assumed to be element of nondivision algebras

(in this case Cl 11,3), we cannot give a satisfactory probability interpretation [17].

It is seen that a D -complex mapping (4),

x ( ^ F H ) C H & ) [ 1 # d 3x F Ä H C H 2 D ^ ^

overcomes the previous problem and gives the required Hermiticity properties

for the momentum operator

x ( ^ F H ) -
- C H g 21 & ) 5 x ( ^

-
- F H g 21 ) C H & ) (11)

Equation (11) implies

1 # d 3x F Ä H

-
- C H 2 D ^ ^

g 21 5 2 g 21 1 # d 3x
-

- F Ä H C H 2 D ^ ^

Now, to prove the Hermiticity of our momentum operator it is sufficient to
perform integration by parts and use the D -complex mapping.

We conclude this section by observing that there is a difference in

translating complex operators and states. For example, the complex imaginary

unit i can be interpreted as operator

i14 P End ( C 4)

or state

1
i

0

0

0 2 , 1
0

i

0

0 2 , 1
0

0

i

0 2 , 1
0

0

0

i 2 P (

The translation will be, respectively,

g r
21 P End (Cl 11,3)

or

g 21, g 31 g 21 5 g 32, g 5 g 21 5 g 03, g 5 g 31 g 21 5 g 01 P Cl 11,3

Let r End be the endomorphism linear mapping

r End: End(() ® End(Cl 11,3) (12)
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We require

r (i C D) 5 r ( C Di), [i, C D] 5 0

The previous relation is satisfied because

r (i C D) 5 r End (i14) r ( C D) 5 g r
21 C H 5 C H g 21

r ( C Di) 5 r ( C 8D) 5 C 8H 5 C H g 21

2. DIRAC EQUATION

Once we have obtained the translation from the Dirac spinor field C D

P ( ^ ^ to the Hestenes spinor field C H P Cl 11,3 ^ ^, we can translate the
standard complex Dirac equation into the even space-time subalgebra.

For convenience, we multiply the left- and right-hand sides of Eq. (2)

by g 0,

i( - t 1 g 0 g k - k) C D 5 m g 0 F D, k 5 1, 2, 3 (13)

We shall prove that this equation can be translated in the Cl 11,3 formalism;

we take the r given by (7) as

r [i( - t 1 g 0 g k - k) C D] 5 m r ( g 0 C D), k 5 1, 2, 3 (14)

In the previous section, we established the maps

r ( C D) 5 C H and r (i C D) 5 g r
21 C H [ C H g 21 (15)

Thus to complete the translation of Eq. (13) in the Cl 11,3 formalism, it remains

to calculate

r ( g 0 C D) and r ( g 0 g k C D), k 5 1, 2, 3

By using the explicit form of the Dirac matrices given in Eq. (3), we find

g 0 g 1 C D [ i 1
c D,4

c D,3

2 c D,2

2 c D,1 2 , g 0 g 2 C D [ 1
2 c D,4

c D,3

c D,2

2 c D,1 2
g 0 g 3 C D [ i 1

2 c D,3

c D,4

c D,1

2 c D,2 2 , g 0 C D [ 1
c D,1

c D,2

2 c D,3

2 c D,4 2
The task is to obtain their counterpart in Cl 11,3 ^ ^. The solution is
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g 01 C H 5 g 21 g 5 g 31 C H [ [ c H,4 1 g 31 c H,3 2 g 5( c H,2 1 g 31 c H,1)] g 21

g 02 C H 5 2 g 5 g 31 C H [ 2 c H,4 1 g 31 c H,3 1 g 5( c H,2 2 g 31 c H,1)

g 03 C H 5 g 21 g 5 C H [ [ 2 c H,3 1 g 31 c H,4 1 g 5( c H,1 2 g 31 c H,1)] g 21

a ( C H) 5 C ÃH [ c H,1 1 g 31 c H,2 2 g 5( c H,3 1 g 31 c H,4)

We now have all the tools needed to complete the translation of the Dirac

equation in the Cl 11,3 formalism. The isomorphisms

r ( g 0 C D) 5 a ( C H) 5 C ÃH and r ( g 0 g k C D) 5 g 0k C H, k 5 1, 2, 3

together with Eq. (15) allow us to write the Cl 11,3 counterpart of Eq. (13).

Finally, the translated Dirac±Hestenes equation reads

( - t 1 g 0k - k) C H g 21 5 m C ÃH P Cl 11,3 ^ ^, k 5 1, 2, 3 (16)

The choice of the Dirac matrices (3) was ad hoc to obtain a simple
translation for the complex Dirac matrices g 0 g k ,

r ( g 0 g k C D) 5 g 0k C H, k 5 1, 2, 3

What happens if we change our basis, g new
m 5 6 g m 6 2 1? We shall show that

it is possible to construct a set of translation rules which enables us to obtain

for a generic 4 3 4 complex matrix its counterpart in the even space-time

subalgebra. Thus, the problem concerning the translation of g new
m is overcome.

A generic 4 3 4 complex matrix is characterized by 32 real elements,
whereas dim R Cl 11,3 5 8, so it seems that we do not have the needed real

freedom degrees to perform our translation. Nevertheless, we must observe

that the space Cl 11,3 ^ ^ is a Cl 11,3-bimodule of the Hestenes spinors C H P
Cl 11,3 ^ ^. This implies, due to the noncommutativity of the Clifford algebra

Cl 11,3, a left/right action on C H. So we must consider along with the standard
eight left generators

1l, g l
01, g l

02, g l
03, g l

21, g l
31, g l

23, g l
5 P End (Cl 11,3) (17)

the right generators

g r
21, g r

31, g r
23 P End (Cl 11,3) (18)

It is not necessary to consider g r
01, g r

02, g r
03, because these operators can be

obtained from the previous ones (18) by g 5 multiplication, [ g 5, Cl 11,3] 5 0.

By using left, (17), and right, (18), generators we can write the operators

ol
1 1 ol

2 g r
21 1 ol

3 g r
31 1 ol

4 g r
23, ol

m P End (Cl 11,3), m 5 1, 2, 3, 4

characterized by 32 real parameters. This does not imply necessarily the
possibility of a translation. In the standard Dirac theory, the operators are



The Dirac± Hestenes Lagrangian 2357

given in terms of 4 3 4 complex matrices and so represent i-complex lin-

ear operators

2D [ C D(a 1 ib)] 5 (2D C D)(a 1 ib), a, b P R

To perform our translation we must require a D -complex linearity for our

operators

2H[ C H(a 1 ib)] 5 (2H C H)(a 1 g 21b)

This implies that the only acceptable right generator is g r
21. The problem is

now the lack of 16 real degrees of freedom

dim R (ol
1 1 ol

2 g r
21) 5 16

The solution is achieved by recalling that in the Clifford algebra Cl 11,3, the
grade involution a P aut (Cl 11,3 ^ ^) represents a D -complex linear operator

a [ C H(a 1 g 21)] 5 a ( C H) a (a 1 g 21b), a ( g 21) 5 g 21, a, b P R

5 a ( C H)(a 1 g 21b)

To obtain the set of translation rules it is sufficient to give explicitly the

matrix counterpart of the operators

1l, g l
21, g l

31, g l
5, g r

21, a P End D (Cl 11,3) (19)

The other operators can be found by suitable multiplications of the previous

ones. It is evident that

1l % 14 and g r
21 % i14 (20)

A computation shows that

g l
21 % 1

i 0 0 0

0 2 i 0 0

0 0 i 0

0 0 0 2 i 2 , g l
31 % 1

0 2 1 0 0

1 0 0 0

0 0 0 2 1

0 0 1 0 2 (21)

g l
5 % 1

0 0 2 1 0

0 0 0 2 1

1 0 0 0

0 1 0 0 2 , a % 1
1 0 0 0

0 1 0 0

0 0 2 1 0

0 0 0 2 1 2
By using Eqs. (20)±(21) we can write the matrix counterpart for a generic

left/right generator. For example,
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g l
01 5 g l

21 g l
31 g l

5 % 1
i 0 0 0

0 2 i 0 0

0 0 i 0

0 0 0 2 i 2 1
0 2 1 0 0

1 0 0 0

0 0 0 2 1

0 0 1 0 2
3 1

0 0 2 1 0

0 0 0 2 1

1 0 0 0

0 1 0 0 2 5 1
0 0 0 i

0 0 i 0

0 2 i 0 0

2 i 0 0 0 2
g l

02 5 2 g l
31 g l

5 % 2 1
0 2 1 0 0

1 0 0 0

0 0 0 2 1

0 0 1 0 2 1
0 0 2 1 0

0 0 0 2 1

1 0 0 0

0 1 0 0 2
5 1

0 0 0 2 1

0 0 1 0

0 1 0 0

2 1 0 0 0 2
g l

03 5 g l
21 g l

5 % 1
i 0 0 0

0 2 i 0 0

0 0 i 0

0 0 0 2 i 2 1
0 2 1 0 0

1 0 0 0

0 0 0 2 1

0 0 1 0 2
5 1

0 0 2 i 0

0 0 0 i

i 0 0 0

0 2 i 0 0 2
The complete set of translation rules is given in Appendix A.

3. THE DIRAC ± HESTENES LAGRANGIAN

Our main objective in this work is to derive the Lagrangian +H that

yields the Dirac±Hestenes equation

$+ C H g 21 5 m C ÃH P CL 1
1,3 ^ ^

$ 6 [ - t 6 g l
0k - k , k 5 1, 2, 3
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We shall obtain the Dirac±Hestenes Lagrangian +H by translation. To do

that, let us start by considering the traditional form for the complex Dirac

Lagrangian,

+D [ C ²
Dh F D P C ^ ^, F D [ (i g m - m 2 m) C D P ( ^ ^

(23)

We showed in (10) that

C ^ ^ { C ²
Dh F D % x ( C Ä H F ÃH) P D ^ ^

Thus, to obtain the desired translation we need to calculate

F ÃH 5 a ( F H) 5 r ( g 0 F D) P Cl 11,3 ^ ^

By using the results presented in the previous section, we find

r ( g 0 F D) 5 r [(i g 0 g m - m 2 m g 0) C D] 5 $+ C H 2 m C ÃH

and consequently

C ^ ^ { +D % +H [ x ( C Ä H$+ C H g 21 2 m C Ä H C ÃH) P D ^ ^ (24)

Let us now discuss the hermiticity of the Dirac±Hestenes Lagrangian

+H. By applying the reversion involution to +H we get

+Ä H 5 x ( 2 g 21 C Ä H $
¬

+ C H 2 m C H C H)

where $
¬

+ indicates the left-action on C Ä H of the derivation which appears in
the operator $+. By observing that

x ( C H C H) 5 x ( C Ä H C ÃH)

and performing integration by parts, we obtain

+Ä H 5 x ( g 21 C Ä H$+ C H 2 m C Ä H C ÃH) (25)

Due to the D -complex geometry, the bivector g 21 can be removed from the

extreme left to right, C Ä H$+ C H, in Eq. (25), and so the hermiticity of the

Dirac±Hestenes Lagrangian is proved,

+H 5 +Ä H

In order to formulate the variational principle within the algebraic formal-

ism, let us rewrite Eq. (24) by using the projection operator

End D (Cl 11,3) { 3 [ 1±2 (1 2 g l
21 g r

21)
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and the grade involution a . The new expression for the Dirac±Hestenes

Lagrangian reads

+H 5 1±2 {3( C Ä H$+ C H g 21 2 m C Ä H C ÃH)

1 a [3( C Ä H$+ C H g 21 2 m C Ä H C ÃH)]} P D ^ ^

or by making explicit the action of the 3-operator and a -involution,

+H 5 1±4 ( C Ä H $+ C H g 21 2 m C Ä H C ÃH

1 g 21 C Ä H$+ C H 1 m g 21 C Ä H C ÃH g 21

1 C H$ 2 C ÃH g 21 2 m C H C H

1 g 21 C H$ 2 C ÃH 1 m g 21 C H C H g 21) (26)

It is here that appeal to the variational principle must be made. A variation

d C H in C H from Eq. (26) cannot be brought to the extreme right because of
the bivector g 21 in the first term of the previous expression. The only consistent

procedure is to generalize the variational rule that says that C H and C H must

be varied independently [18]. We thus apply independent variations to

C H, C H g 21, C ÃH, C ÃH g 21 (27)

and

C Å H, g 21 C H, C Ä H, g 21 C Ä H (28)

This generalization of the variational principle is discussed in Appendix B.
The variations applied to fields (27) field the adjoint Dirac±Hestenes equation

2 g 21 C Ä H $
¬

+ 5 m C H (29)

whereas applying thems to fields (28) yields the Dirac±Hestenes equation

$+ C H g 21 5 m C Ä H (30)

Let us discuss an interesting point. The Dirac±Hestenes Lagrangian (24)
is D -complex and Hermitian. The situation is more subtle with a classical

field, for now +new
H , defined by

+new
H 5 1±2 ( C Ä H$+ C H g 21 1 g 21 C Ä H$+ C H 2 m C Ä H C ÃH 2 m C Å H C H) P ^

is both Hermitian and real. Thus it may be objected that the complex projection
in the previous classical Lagrangian is superfluous. For +new

H itself this true,

but for multivectorial algebraic variations in the fields, d C H, etc., a difference

exists. The variation d +new
H P Cl 11,3 ^ ^, while d +H from (24) is always D -

complex. Furthermore, +new
H does not yield the correct field equation through
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the variational principle unless we limit d C H, etc., to D -complex variations

notwithstanding C H P Cl 11,3 ^ ^. We consider this latter option unjustified

and thus select for the formal structure of the classical Lagrangian that of
Eq. (24). Let us summarize the situation concerning fields and variations:

C H, C ÃH, C ÃH, C H, C Ä H P Cl 11,3 ^ ^

d ( C H), d ( C H g 21), d ( C ÃH), d ( C ÃH g 21) P Cl 11,3 ^ ^

d ( C H), d ( g 21 C H), d ( C Ä H), d ( g 21 C Ä H) P Cl 11,3 ^ ^

+H P D ^ ^

d +H P D ^ ^

We conclude this section by discussing an alternative way to obtain the

field equations from the Dirac±Hestenes Lagrangian. Let us rewrite the a -

involution by using the operator g l
0 g r

0,

a ( C H) [ C ÃH 5 g 0 C H g 0 P Cl 11,3 ^ ^

By adopting this notation we can express the Dirac±Hestenes Lagrangian as

+H 5 33 a [ C Ä H$+ C H g 21 2 m C Ä H g 0 C H g 0] P D ^ ^ (31)

where

3 a [ 1±2 (1 1 g l
0 g r

0), [3, 3 a ] 5 0

By making the variation

C H ® C H 1 d C H (32)

we can put d C H on the extreme right because, due to our mapping on D ^
^, we can bring g 21 and g 0 from the extreme right to left in Eq. (31). In fact,

3(! g 21) 5 3( g 21!)

3 a (! g 0) 5 3 a ( g 0!)

with

! P Cl1,3 ^ ^

The variation (32) implies

d +H 5 33 a [ C Ä H$+ d C H g 21 2 m C Ä H g 0 d C H g 0]

which, after integration by parts and by moving g 21 and g 0 from the extreme

right to left, becomes
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d +H 5 33 a [ 2 g 21 C Ä H $
¬

+ d C H 2 m g 0 C Ä H g 0 d C H]

Finally, d +H 5 0 implies

2 g 21 C Ä H $
¬

+ 5 m g 0 C Ä H g 0

and so we obtain the adjoint Dirac±Hestenes equation (29), as required.

4. THE INVARIANCE GROUP OF +H

Having obtained the Dirac±Hestenes Lagrangian in the previous section,

we may ask which global group leaves this Lagrangian invariant. Remember-

ing that C H P Cl 11,3 ^ ^, we have that the most general D -complex linear

transformation on C H is given by

C H ® (A l 1 Bl g r
21 1 Cl g l

0 g r
0 1 Dl g r

21 g l
0 g r

0) C H P Cl 11,3 ^ ^ (33)

with

Al, Bl, Cl, Dl P Cl 1 (l)
1,3

Now, the algebraic structure of the Dirac operator $+ strongly limits the left
action on C H; this leads to the conclusion that

Al 5 a ? 1l, Bl 5 b ? 1l, Cl 5 0, D l 5 0, a, b P R

So Eq. (33) will be modified as

C H ® (a ? 1l 1 b ? g r
21) C H [ C H(a 1 g 21b) (34)

and consequently

C ÃH ® C ÃH(a 1 g 21b)

C Ä H ® (a 2 g 21b) C Ä H (35)

Applying the global transformations (34)±(35), we find that the Dirac±
Hestenes Lagrangian becomes

+8H [ x [z*( C Ä H$+ C H g 21 2 m C Ä H C ÃH)z]

[ z*z x ( C Ä H$+ C H g 21 2 m C Ä H C ÃH), z, z* P D

Thus by requiring z*z 5 1, we find that the only invariance group is defined by

U(1, g r
21)

where the previous notation means the right action of the D -complex unitary

group on the algebraic spinor C H,
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C H ® e g r
21 d C H [ C He g 21 d , d P R (36)

Remembering that the Glashow group [19] for the Salam±Weinberg

theory [20, 21] is SU(2) ^ U(1), we observe that this U(1) group may be

identified with our U(1, g r
21), and our field C H P Cl 11,3 ^ ^ must necessarily

be a singlet (scalar) under SU(2).
The interesting feature is what happens if we select a field in the full

space±time algebra Cl1,3 ^ ^. Now the number of fermionic particles is two,

C (1)
H 1 C (2)

H g 0, C (1,2)
H P Cl 11,3 ^ ^

For example the leptons of the first family (electronic neutrino n e , electron
e) can be concisely rewritten in Cl1,3 ^ ^ as

C (1st fam)
Lep 5 C ( n e)

H 1 C (e)
H g 0, C ( n e,e)

H P Cl 11,3 ^ ^ (37)

The orthogonality of the fields C ( n e)
H , C (e)

H g 0 is guaranteed by our D -com-
plex mapping,

x ( F Ä C Ãg 0) 5 0, F , C P Cl 11,3 ^ ^

Now it is still not obvious, due to the presence of the Dirac operator $+,

that an invariance group isomorphic to SU(2) exists. We remark that to
obtain a global invariance isomorphic to SU(2) we must choose suitable

combinations of

g l,r
5 , g r

0, g r
21

These operators satisfy

[ g l
5, $+] 5 0

and

x ([!, g 5]) 5 x ([!, g 0]) 5 x ([!, g 21]) 5 0, ! P Cl1,3 ^ ^

Consequently, the infinitesimal transformation

C Lep ® (1 1 a 1 g r
0 g r

21 1 a 2 g l
5 g r

5 g r
0 1 a 3 g l

5 g r
5 g r

21

1 b g r
21) C Lep, 1 À a 1,2,3, b P R

leaves invariant the zero-mass Lagrangian

+Lep [ x ( C Ä Lep$+ C Lep g 21) P D ^ ^ (38)

The zero-mass fields will gain mass by spontaneous symmetry breaking

[22, 23].

The anti-Hermitian generators
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g r
0 g r

21, g l
5 g r

5 g r
0, g l

5 g r
5 g r

21, g r
21

represent the multivectorial Cl1,3 counterpart of the generators of the standard

(complex) Glashow group

SU(2) ^ U(1)

5. CONCLUSIONS

We begin our discussion with the last results of the last section. We

have shown that by working within a multivectorial formalism it is possible

to impose a Glashow group invariance and that this occurs by merely adopting

Cl1,3 fields. Our viewpoint is that the SU(2) ^ U(1) invariance in particle

physics could be better understood by working in the Cl1,3 formalism, where

each element is suitable to geometric interpretation. For example, a better
understanding of the geometric meaning of the generators of the invariance

Glashow group could be very important in reaching grand unification groups.

The adoption of a D -complex geometry represents a fundamental ingredient of

the multivectorial algebraic approach to quantum mechanics. Such a mapping

gives the desired electromagnetic invariance U(1, g r
21) and suggests an invari-

ance group isomorphic to the Glashow group. By passing from Cl 11,3 to Cl1,3

fields, the D -complex geometry guarantees the right orthogonality between

electron and neutrino field and gives the possibility to find four Cl(l/r)1,3 elements

which are isomorphic to the generators of the electroweak group SU(2) ^
U(1). A complete discussion on the Salam±Weinberg model in the multivecto-

rial formalism will be presented in a forthcoming paper [24].
Let us recall the other result of this paper. We discussed and generalized

the application of the variational principle to Lagrangians with Cl 11,3 fields.

In order to obtain the Dirac±Hestenes equation we proved the need to adopt a

D -complex mapping for our Lagrangians or apply, due to the noncommutative

nature of the Clifford algebras, different variations for the fields C H,

C H g 21, etc.
We also recall the possibility to perform a translation between 4 3 4

complex matrices and left/right elements of the even space-time subalgebra.

This allows an immediate translation of the Dirac equation in the multivecto-

rial formalism. Obviously this approach can be used to reproduce other

standard results of quantum mechanics. We conclude by emphasizing that

this translation represents only a partial translation, for example, it does not
apply to odd-dimensional complex matrices. Different outputs can be obtained

by working with Clifford algebras. New geometric interpretations naturally

appear in the space-time algebraic approach and this could be very useful in

reaching fundamental symmetries in unification Lagrangians.



The Dirac± Hestenes Lagrangian 2365

APPENDIX A. TRANSLATION RULES

Let us define the projectors

a 6 [ 1±2 (id 6 a ) P End D (Cl 11,3)

The 16 linear independent 4 3 4 matrices have the following counterparts

in the even space-time subalgebra:

a + % 1
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0 2 , g l
21 g r

21 a + % 1
2 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0 2 ,
g l

23 g r
21 a + % 1

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0 2 , g l
31 a + % 1

0 2 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0 2
a 2 % 1

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1 2 , g l
21 g r

21 a 2 % 1
0 0 0 0

0 0 0 0

0 0 2 1 0

0 0 0 1 2 ,
g l

23 g r
21 a 2 % 1

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0 2 , g l
31 a 2 % 1

0 0 0 0

0 0 0 0

0 0 0 2 1

0 0 1 0 2
2 g l

5 a + % 1
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0 2 , g l
03 g r

21 a + % 1
0 0 1 0

0 0 0 2 1

0 0 0 0

0 0 0 0 2 ,
2 g l

01 g r
21 a + % 1

0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0 2 , g l
02 a + % 1

0 0 0 2 1

0 0 1 0

0 0 0 0

0 0 0 0 2
g l

5 a 2 % 1
0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0 2 , g l
03 g r

21 a 2 % 1
0 0 0 0

0 0 0 0

2 1 0 0 0

0 1 0 0 2 ,
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g l
01 g r

21 a 2 % 1
0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0 2 , g l
02 a 2 % 1

0 0 0 0

0 0 0 0

0 1 0 0

2 1 0 0 0 2
The remaining 16 ª complexº matrices are obtained by g r

21 % i14 multipli-

cation. The 16 operators

(1l, g l
21 g r

21, g l
23 g r

21, g l
31, g l

5, g l
03 g r

21, g l
02, g l

01 g r
21) a 6 P End D (Cl 11,3)

are D -complex linearly independent,

dim D Cl 1 (l/r)
1,3 5 dim C Mat4( C ) 5 16

The proof is based on the i-complex linear independence of the listed 4 3
4 real matrices.

APPENDIX B. VARIATIONAL PRINCIPLE

Consider one of the simplest of all particle Lagrangian densities, that
for two classical scalar fields, w 1,2 P ^, without interactions

+ 5 1±2 - m w 1 - m w 1 2
m2

2
w 2

1 1 1±2 - m w 2 - m w 2 2
m2

2
w 2

2 (B1)

[ - m f ² - m f 2 m2 f
²
f

where

f [
1

! 2
( w 1 1 i w 2) P C ^ ^, f ² [

1

! 2
( w 1 2 i w 2) P C ^ ^

The corresponding Euler±Lagrange equations are

( - m - m 1 m2) w 1,2 5 0 (B2)

or, equivalently,

( - m - m 1 m2) f 5 0 (B3)

Now to obtain ª directlyº the last equation one performs very particular

variations of f and f ² ,

f ® f , f ² ® f ² 1 d f ² (B4)

i.e., in order to obtain the corresponding Euler±Lagrangian equation one

treats f and f ² as independent fields. In second quantization these fields

indeed contain independent creation and annihilation operators corresponding
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to positive and negative charged particles. To satisfy Eq. (B4) we must

necessarily have

d w 1 1 i d w 2 5 0 (B5)

and this means that the variations in the originally real w 1,2 fields are complex

(if d w 1 is real, then d w 2 is pure imaginary, etc.).

In this Appendix we generalize the variational rule given for ª complexº

fields. Let C P Cl 11,3 ^ ^ be expressed by

C 5 c 0 1 g 01 c 1 1 g 02 c 2 1 g 03 c 3 1 g 21 c 4 1 g 31 c 5 1 g 23 c 6

1 g 5 c 7, c 0,...,7 P ^

As shown in the Introduction, we can define the involutions

C Ã 5 c 0 2 g 01 c 1 2 g 02 c 2 2 g 03 c 3 1 g 21 c 4 1 g 31 c 5 1 g 23 c 6 2 g 5 c 7

C Ä 5 c 0 1 g 01 c 1 1 g 02 c 2 1 g 03 c 3 2 g 21 c 4 2 g 31 c 5 2 g 23 c 6 2 g 5 c 7

C 5 c 0 2 g 01 c 1 2 g 02 c 2 2 g 03 c 3 2 g 21 c 4 2 g 31 c 5 2 g 23 c 6 1 g 5 c 7

The complex variational principle which treats F and F ² as independent

fields is now generalized by applying different variations to C , C Ã, C Ä , C .

Nevertheless, by working within the noncommutative algebra Cl 11,3 we must

also analyze the following fields:

2 g 21 C g 21, 2 g 31 C g 31, 2 g 23 C g 23

2 g 21 C Ãg 21, 2 g 31 C Ãg 31, 2 g 23 C Ãg 23

2 g 21 C Ä g 21, 2 g 31 C Ä g 31, 2 g 23 C Ä g 23

In fact, we can treat C and F 5 2 g 21 C g 21 as independent fields

C ® C , F ® F 1 d F

The previous equation is satisfied by requiring

d c 0 1 g 01 d c 1 1 g 02 d c 2 1 g 03 d c 3 1 g 21 d c 4 1 g 31 d c 5 1 g 23 d c 6

1 g 5 d c 7 5 0

and this means that the variations in the originally real fields c 0,...,7 are in

Cl 11,3. In conclusion, we must apply different variations to the fields

C , C Ã, C Ä , C Å , F , F Ã, F Ä , F

which appear in the Dirac±Hestenes Lagrangian (26),

+H 5 1±4( C Ä H$+ g 21 F H 2 m C Ä H C ÃH

1 F Ä H g 21$+ C H 2 m F Ä H F ÃH
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1 C Å H$ 2 g 21 F ÃH 2 m C H C H

1 F Å H g 21$ 2 C ÃH 2 m F H F H) (B6)
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